233 research outputs found

    Ownership-dependent mating tactics of minor males of the beetle Librodor japonicus (Nitidulidae) with intra-sexual dimorphism of mandibles

    Get PDF
    Intra-sexual dimorphism is found in the weapons of many male beetles. Different behavioral tactics to access females between major and minor males, which adopt fighting and alternative tactics, respectively, are thought to maintain the male dimorphism. In these species major males have enlarged weapons that they use in fights with rival males. Minor males also have small weapons in some of these species, and it is unclear why these males possess weapons. We examined the hypothesis that minor males might adopt a fighting tactic when their status was relatively high in comparison with that of other males (e.g., ownership of a territory). We observed the behavioral tactics of major and minor males of the beetle Librodor japonicus, whose males have a dimorphism of their mandibles. Major males fought for resources, whereas minor males adopted two status-dependent tactics, fighting and sneaking, to access females, depending on their ownership of a sap site. We suggest that ownership status-dependent mating tactics in minor males may maintain the intra-sexual dimorphism in this beetle.</p

    Colony-level differences in the scaling rules governing wood ant compound eye structure

    Get PDF
    Differential organ growth during development is essential for adults to maintain the correct proportions and achieve their characteristic shape. Organs scale with body size, a process known as allometry that has been studied extensively in a range of organisms. Such scaling rules, typically studied from a limited sample, are assumed to apply to all members of a population and/or species. Here we study scaling in the compound eyes of workers of the wood ant, Formica rufa, from different colonies within a single population. Workers' eye area increased with body size in all the colonies showing a negative allometry. However, both the slope and intercept of some allometric scaling relationships differed significantly among colonies. Moreover, though mean facet diameter and facet number increased with body size, some colonies primarily increased facet number whereas others increased facet diameter, showing that the cellular level processes underlying organ scaling differed among colonies. Thus, the rules that govern scaling at the organ and cellular levels can differ even within a single population

    Ecological genomics: steps towards unraveling the genetic basis of inducible defenses in Daphnia

    Get PDF
    Little is known about the genetic mechanisms underlying inducible defenses. Recently, the genome of Daphnia pulex, a model organism for defense studies, has been sequenced. Building on the genome information, recent preliminary studies in BMC Developmental Biology and BMC Molecular Biology have assessed gene response profiles in Daphnia under predation pressure. We review the significance of the findings and highlight future research perspectives

    Does size matter for horny beetles? A geometric morphometric analysis of interspecific and intersexual size and shape variation in Colophon haughtoni Barnard, 1929, and C. kawaii Mizukami, 1997 (Coleoptera: Lucanidae)

    Get PDF
    Colophon is an understudied, rare and endangered stag beetle genus with all species endemic to isolated mountain peaks in South Africa’s Western Cape. Geometric morphometrics was used to analyse intersexual and interspecific variation of size and shape in the mandibles, heads, pronota and elytra of two sympatric species: Colophon haughtoni and Colophon kawaii. All measured structures showed significant sexual dimorphism, which may result from male-male competition for females. Female mandibles were too small and featureless for analysis, but male Colophon beetles possess large, ornate mandibles for fighting. Males had significantly larger heads and pronota that demonstrated shape changes which may relate to resource diversion to the mandibles and their supporting structures. Females are indistinguishable across species, but males were accurately identified using mandibles, heads and pronota. Male C. kawaii were significantly larger than C. haughtoni for all structures. These results support the species status of C. kawaii, which is currently in doubt due to its hybridisation with C. haughtoni. We also demonstrate the value of geometric morphometrics as a tool which may aid Colophon conservation by providing biological and phylogenetic insights and enabling species identification

    Variation in pre- and post-copulatory sexual selection on male genital size in two species of lygaeid bug

    Get PDF
    This study was funded by the Natural Environmental Research Council (DTG studentship 1109354 to LRD).Sexual selection has been shown to be the driving force behind the evolution of the sometimes extreme and elaborate genitalia of many species. Sexual selection may arise before and/or after mating, or vary according to other factors such as the social environment. However, bouts of selection are typically considered in isolation. We measured the strength and pattern of selection acting on the length of the male intromittent organ (or processus) in two closely related species of lygaeid seed bug: Lygaeus equestris and Lygaeus simulans. In both species, we measured both pre- and post-copulatory selection. For L. equestris, we also varied the experimental choice design used in mating trials. We found contrasting pre- and post-copulatory selection on processus length in L. equestris. Furthermore, significant pre-copulatory selection was only seen in mating trials in which two males were present. This selection likely arises indirectly due to selection on a correlated trait, as the processus does not interact with the female prior to copulation. In contrast, we were unable to detect significant pre- or post-copulatory selection on processus length in L. simulans. However, a formal meta-analysis of previous estimates of post-copulatory selection on processus length in L. simulans suggests that there is significant stabilising selection across studies, but the strength of selection varies between experiments. Our results emphasise that the strength and direction of sexual selection on genital traits may be multifaceted and can vary across studies, social contexts and different stages of reproduction.Publisher PDFPeer reviewe

    On Dorsal Prothoracic Appendages in Treehoppers (Hemiptera: Membracidae) and the Nature of Morphological Evidence

    Get PDF
    A spectacular hypothesis was published recently, which suggested that the “helmet” (a dorsal thoracic sclerite that obscures most of the body) of treehoppers (Insecta: Hemiptera: Membracidae) is connected to the 1st thoracic segment (T1; prothorax) via a jointed articulation and therefore was a true appendage. Furthermore, the “helmet” was interpreted to share multiple characteristics with wings, which in extant pterygote insects are present only on the 2nd (T2) and 3rd (T3) thoracic segments. In this context, the “helmet” could be considered an evolutionary novelty. Although multiple lines of morphological evidence putatively supported the “helmet”-wing homology, the relationship of the “helmet” to other thoracic sclerites and muscles remained unclear. Our observations of exemplar thoraces of 10 hemipteran families reveal multiple misinterpretations relevant to the “helmet”-wing homology hypothesis as originally conceived: 1) the “helmet” actually represents T1 (excluding the fore legs); 2) the “T1 tergum” is actually the anterior dorsal area of T2; 3) the putative articulation between the “helmet” and T1 is actually the articulation between T1 and T2. We conclude that there is no dorsal, articulated appendage on the membracid T1. Although the posterior, flattened, cuticular evagination (PFE) of the membracid T1 does share structural and genetic attributes with wings, the PFE is actually widely distributed across Hemiptera. Hence, the presence of this structure in Membracidae is not an evolutionary novelty for this clade. We discuss this new interpretation of the membracid T1 and the challenges of interpreting and representing morphological data more broadly. We acknowledge that the lack of data standards for morphology is a contributing factor to misinterpreted results and offer an example for how one can reduce ambiguity in morphology by referencing anatomical concepts in published ontologies

    Where Two Are Fighting, the Third Wins: Stronger Selection Facilitates Greater Polymorphism in Traits Conferring Competition-Dispersal Tradeoffs

    Get PDF
    A major conundrum in evolution is that, despite natural selection, polymorphism is still omnipresent in nature: Numerous species exhibit multiple morphs, namely several abundant values of an important trait. Polymorphism is particularly prevalent in asymmetric traits, which are beneficial to their carrier in disruptive competitive interference but at the same time bear disadvantages in other aspects, such as greater mortality or lower fecundity. Here we focus on asymmetric traits in which a better competitor disperses fewer offspring in the absence of competition. We report a general pattern in which polymorphic populations emerge when disruptive selection increases: The stronger the selection, the greater the number of morphs that evolve. This pattern is general and is insensitive to the form of the fitness function. The pattern is somewhat counterintuitive since directional selection is excepted to sharpen the trait distribution and thereby reduce its diversity (but note that similar patterns were suggested in studies that demonstrated increased biodiversity as local selection increases in ecological communities). We explain the underlying mechanism in which stronger selection drives the population towards more competitive values of the trait, which in turn reduces the population density, thereby enabling lesser competitors to stably persist with reduced need to directly compete. Thus, we believe that the pattern is more general and may apply to asymmetric traits more broadly. This robust pattern suggests a comparative, unified explanation to a variety of polymorphic traits in nature.ope

    Phenology of Scramble Polygyny in a Wild Population of Chrysolemid Beetles: The Opportunity for and the Strength of Sexual Selection

    Get PDF
    Recent debate has highlighted the importance of estimating both the strength of sexual selection on phenotypic traits, and the opportunity for sexual selection. We describe seasonal fluctuations in mating dynamics of Leptinotarsa undecimlineata (Coleoptera: Chrysomelidae). We compared several estimates of the opportunity for, and the strength of, sexual selection and male precopulatory competition over the reproductive season. First, using a null model, we suggest that the ratio between observed values of the opportunity for sexual selections and their expected value under random mating results in unbiased estimates of the actual nonrandom mating behavior of the population. Second, we found that estimates for the whole reproductive season often misrepresent the actual value at any given time period. Third, mating differentials on male size and mobility, frequency of male fighting and three estimates of the opportunity for sexual selection provide contrasting but complementary information. More intense sexual selection associated to male mobility, but not to male size, was observed in periods with high opportunity for sexual selection and high frequency of male fights. Fourth, based on parameters of spatial and temporal aggregation of female receptivity, we describe the mating system of L. undecimlineata as a scramble mating polygyny in which the opportunity for sexual selection varies widely throughout the season, but the strength of sexual selection on male size remains fairly weak, while male mobility inversely covaries with mating success. We suggest that different estimates for the opportunity for, and intensity of, sexual selection should be applied in order to discriminate how different behavioral and demographic factors shape the reproductive dynamic of populations
    corecore